A Semismooth Newton Method for the Nearest Euclidean Distance Matrix Problem
نویسندگان
چکیده
منابع مشابه
A Semismooth Newton Method for the Nearest Euclidean Distance Matrix Problem
The Nearest Euclidean distance matrix problem (NEDM) is a fundamental computational problem in applications such as multidimensional scaling and molecular conformation from nuclear magnetic resonance data in computational chemistry. Especially in the latter application, the problem is often large scale with the number of atoms ranging from a few hundreds to a few thousands. In this paper, we in...
متن کاملStructure method for solving the nearest Euclidean distance matrix problem
*Correspondence: [email protected] Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia Abstract A matrix with zero diagonal is called a Euclidean distance matrix when the matrix values are measurements of distances between points in a Euclidean space. Because of data errors such a matrix may not be exactly Euclidean and it is desira...
متن کاملA Sequential Semismooth Newton Method for the Nearest Low-rank Correlation Matrix Problem
Based on the well-known result that the sum of the largest eigenvalues of a symmetric matrix can be represented as a semidefinite programming problem (SDP), we formulate the nearest low-rank correlation matrix problem as a nonconvex SDP and propose a numerical method that solves a sequence of least-square problems. Each of the least-square problems can be solved by a specifically designed semis...
متن کاملA semismooth Newton method for tensor eigenvalue complementarity problem
In this paper, we consider the tensor eigenvalue complementarity problem which is closely related to the optimality conditions for polynomial optimization, as well as a class of differential inclusions with nonconvex processes. By introducing an NCP-function, we reformulate the tensor eigenvalue complementarity problem as a system of nonlinear equations. We show that this function is strongly s...
متن کاملComputing the nearest Euclidean distance matrix with low embedding dimensions
Euclidean distance embedding appears in many high-profile applications including wireless sensor network localization, where not all pairwise distances among sensors are known or accurate. The classical Multi-Dimensional Scaling (cMDS) generally works well when the partial or contaminated Euclidean Distance Matrix (EDM) is close to the true EDM, but otherwise performs poorly. A natural step pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2013
ISSN: 0895-4798,1095-7162
DOI: 10.1137/110849523